LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA

نویسندگان

  • Liping Shen
  • Qi Wang
  • Ruixue Liu
  • Zhongmin Chen
  • Xueqing Zhang
  • Pingkun Zhou
  • Zhidong Wang
چکیده

DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. The current models of the mechanism of DSB repair are based on studies of DNA repair proteins. Long non-coding RNAs (lncRNAs) have recently emerged as new regulatory molecules, with diverse functions in biological processes. In the present study, we found that expression of the ionizing radiation-inducible lncRNA, lnc-RI, was correlate negatively with micronucleus frequencies in human peripheral blood lymphocytes. Knockdown of lnc-RI significantly increased spontaneous DSBs levels, which was confirmed to be associated with the decreased efficiency of homologous recombination (HR) repair of DSBs. The expression of RAD51, a key recombinase in the HR pathway, decreased sharply in lnc-RI-depressed cells. In a further investigation, we demonstrated that miR-193a-3p could bind with both lnc-RI and RAD51 mRNA and depressed the expression of lnc-RI and RAD51 mRNA. Lnc-RI acted as a competitive endogenous RNA (ceRNA) to stabilize RAD51 mRNA via competitive binding with miR-193a-3p and release of its inhibition of RAD51 expression. To our knowledge, this is the first study to demonstrate the role of lnc-RI in regulating HR repair of DSBs. The feedback loop established in the current study suggests that lnc-RI is critical for the maintenance of genomic stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair

The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus...

متن کامل

A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination.

Homologous recombination (HR) is one of the major DNA double-strand break (DSB) repair pathways in mammalian cells. Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51, which is recruited to DSBs by BRCA2. However, the regulation of the BRCA2-RAD51 axis remains unclear. Here we report ...

متن کامل

Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity

BRCA2 is a multi-faceted protein critical for the proper regulation of homology-directed repair of DNA double-strand breaks. Elucidating the mechanistic features of BRCA2 is crucial for understanding homologous recombination and how patient-derived mutations impact future cancer risk. Eight centrally located BRC repeats in BRCA2 mediate binding and regulation of RAD51 on resected DNA substrates...

متن کامل

BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.

The breast/ovarian cancer susceptibility proteins BRCA1 and BRCA2 maintain genome stability, at least in part, through a functional role in DNA damage repair. They both colocalize with RAD51 at sites of DNA damage/replication and activate RAD51-mediated homologous recombination repair of DNA double-strand breaks (DSB). Whereas BRCA2 interacts directly with and regulates RAD51, the role of BRCA1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2018